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ABSTRACT 

A joint extension of H. Furstenberg's central sets theorem, the Hales- 

Jewett coloring theorem and the polynomial van der Waerden theorem of 

V. Bergelson and A. Leibman is obtained by an elaboration on Fursten- 

berg and Y. Katznelson's approach to infinitary Ramsey theory via the 

enveloping semigroup. 

0. In troduct ion  

Van der Waerden's theorem ([vdW]) states that for any finite partition of the 

natural numbers N, at least one of the cells contains arbitrarily long arithmetic 

progressions. There are at least three senses in which van der Waerden's theorem 

has been extended (in [HJ], [F] and [BL1]). Moreover, joint extensions have 

been given for any two of these three directions considered together (in [CS], 

[BL2] and [M]). The purpose of this paper is to provide an extension of van 

der Waerden's theorem in all three directions simultaneously. Specifically, we 

produce a "polynomial version" of an infinitary Hale-Jewett type theorem due 

to T. Carlson and S. Simpson. 

The first direction of extension we consider was originally provided by 

V. Bergelson and A. Leibman, who in [BL1] considered "polynomial progressions" 

instead of arithmetic progressions. A special case of their result states that  if 

p l (x ) , . . .  ,pk(x) �9 Z[x] with pi(0) = 0, 1 < i < k, then if Z = [.Jir__l C~ is a finite 

partition then for some i, 1 < i < r, some a �9 Z, and some n > 0, 

{a + p l ( n ) , a + p 2 ( n ) , . . . , a  + pk(n)} C Ci. 
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The second direction of extension is exemplified by the classical Hales-Jewett 

coloring theorem. For M, k E N, let ~(k)  denote the set of all words of length M ' ' M  
.. _ oo IA:(k) A va r i ab le  using the "letters" {0, 1,. ,k 1}. Write also W (k) = UM=I "'M �9 

w o r d  of length M is a word w(x) on the letters {0, 1 , . . . ,  k -  1, x}, where the 

"variable" x appears at least once. A length M variable word w(x) gives rise in a 
.. ~A~(k) natural way (via simple replacement) to a function w : {0, 1,. , k - 1} -+ , "M �9 

The Hales-Jewett theorem states that for any k, r E N, there exists M = M(k ,  r) 

such that  . . . .  M = Ui=l Ci then some cell Ci contains a configuration of the form 

{w(i) : i = 0, 1 , . . . ,  k - 1}, where w(x) is a length M variable word. (To see that 

this in fact extends van der Waerden's theorem, identify the word ili2 . . .  iM with 

the natural number 1 + )-':~M 1 i jk  j -x  and check that the resulting configuration 

corresponds to an arithmetic progression of length k.) 

Although it is not completely clear from the above discussion, the Hales-Jewett 

theorem has a strictly set-theoretic formulation that may be "polynomialized". 

Indeed, if one replaces numbers by sets in an appropriate Cartesian product 

space, then replaces addition and multiplication by set-theoretic union and prod- 

uct, respectively, one may develop a language in which it is possible to formulate 

a "polynomial Hales-Jewett theorem". Such a result was proved, again by Bergel- 

son and Leibman, in [BL2]. 

The set-up is as follows. Let l E N be fixed for the time being. A se t -  

m o n o m i a l  (over N I) in the variable X is an expression m ( X )  = $1 x $2 x . . .  x Sl, 

where for each i, 1 < i < l, Si is either the symbol X or a non-empty singleton 

subset of N. The d e g r e e  of the monomial is the number of times the symbol X 

appears in the list Sx , . . . ,  St. For example, taking l = 3, m ( X )  = {5} x X x X 

is a set-monomial of degree 2, while re(X)  -- X x {17} x {2} is a set-monomial 

of degree 1. A s e t - p o l y n o m i a l  is an expression of the form 

p( x )  = ml (x) u m2(x) u . . . u x) ,  

where m l ( X ) , . . . , m k ( X )  are set-monomials. The degree of a set-polynomial 

is the largest degree of its set-monomial "summands", and its c o n s t a n t  t e r m  

consists of the "sum" of those mi that are constant, i.e. of degree zero. 

Letting 3r(S) denote the family of non-empty finite subsets of a set S, any 

non-empty set polynomial p(A) determines a function from 3r(N) to 3r(N t) in 

the obvious way (interpreting the symbol x as Cartesian product and the symbol 

U as union). The following is a consequence of [BL2, Theorem 3.5]. 

THEOREM 0.1: Let l E N and let p l ( X ) , . . .  ,pk(X) be set-polynomials over N ~ 

whose constant terms are empty. Let H C N be any finite set and let r E N.  
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There exists a finite set M C N, with M n H = 0, having the property that if 
r 

~(Nl )  = Ui=l c i  then there exists j ,  1 <_ j < r, some non-empty N C M,  and 
k M some A C Ui=lp~( )such that A M p i ( N )  =O, l < i < k, and 

{ A U p l ( N ) , A U p 2 ( N ) , . . . , A U p k ( N ) }  C Cj. 

To pave the way for the third type of extension we consider, let us introduce 

some notation and definitions. Let 9 v = .T(N) denote the family of finite, non- 

empty subsets of N. For a, f~ E ~ ,  write a </~ if for all n E a and all m E/~, n < 

m. An I P - r i n g  consists of all non-empty finite unions taken from an increasing 

sequence (ai),~176 1 C 9 v (notice that .T itself is an IP-ring, corresponding to the 

sequence a ,  = {i}). If .T (I) is an IP-ring, a sequence (xa )aeym in an additive 

abelian semigroup will be called an I P - s e t  if xou~ = x~ +xt~ whenever aN f3 = O. 

Now, the final manner we consider in which van der Waerden's theorem may 

be extended is by seeking infinite configurations. The prototypical model for this 

genre of "infinitary Ramsey theory" is Hindman's theorem ([H]), which states 

that  for any finite partition of an IP-set, some cell contains an sub-IP-set (hence 

the infinite monochromatic configuration arrived at has the identical structure of 

the object originally colored). The first really satisfactory example of an infinitary 

van der Waerden-type theorem is Furstenberg's so-called "central sets theorem" 

(IF, Proposition 8.21]), a special case of which guarantees a monochromatic "IP- 

set of arithmetic progressions" for any finite coloring of N. 

The simultaneous extension in the infinitary and set-theoretic directions is due 

to Carlson and Simpson ([CS]). We give now a (somewhat weakened) version of 

their theorem. (The full strength of their result implies that all but the first 

variable word w~(x) appearing in the formulation below may be chosen with x 

as the left-most letter.) 

= r C THEOREM 0.2: Let k , r  E N.  I f  W (k) Ui=l i then there exists j ,  with 
o o  1 < j <_ r, and a sequence o[variable words {wi(x)}i= 1 such that for ali M E N 

and an choices it e { 0 , 1 , . . . , k  - 1}, 1 < t < M, wl(il)w=(i=)..  "WM(iM) E Cj. 

Notice thatz as is the case with Hindman's theorem, the substructure one 

obtains in one cell has the same form as the original structure (in this case, via 

the correspondence i l i2 . . ,  iM ++ wi ( i l )w2( i2)"  "WM(iM)). 
Finally, an infinitary polynomial van der Waerden theorem was obtained in 

[M], 
r THEOREM 0.3: Let N = Ui=t Ci, and suppose (n.).ea: is an IP-set in Z. Given 

polynomials p t ( x ) , . . . , p k ( x )  ~ Z[x] with pi(O) = O, 1 < i < k, there exists j ,  
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with 1 <_ j <_ r, an IP-ring jr(i), and an IP-set (an)new-(i) such that for all 
a E y~(1), 

{aa + pl(n~,),a~ + p2(n~) , . . .  ,a~, + pk(n~)} C Cj. 

Our main result, Theorem 2.3, is an extension of van der Waerden's theorem 

in all three of the aforementioned senses. Moreover, it has the aesthetic prop- 

erty already observed in Hindman's theorem and the Carlson-Simpson theorem. 

Namely, the monochromatic configuration obtained is isomorphic to that which 

is initially colored. 

The structure of the paper is as follows. In Section 1, we prove in detail a 

special case of a "set theoretic" formulation of our main theorem in which, for 

ease of notation, we limit the number of dimensions to 2. Next, we develop 

a "matrix terminology" then cast the main theorem in that. In Section 2, we 

expand the matrix terminology, and formulate our main theorem (Theorem 2.3) 

for any finite number of dimensions. Finally, we demonstrate that our result is 

indeed an extension of Theorem 0.2 by deriving Theorem 0.2 from it. 

1. A quadratic inflnitary Hales-Jewett type theorem 

A semigroup S is a compact left topological semigroup if it is endowed with 

a topology with respect to which it is a compact Hausdorff space and with respect 

to which the map t --4 ts is continuous for all s E S. (Note: some authors call 

this r i gh t  topological.) 

PROPOSITION 1.1: (see [E]) Any compact left topological semigroup S possesses 

an idempotent. 

Proof." Let A4 denote the family of non-empty closed subsets P C S for which 

p2 C P.  By Zorn's Lemma, 34 contains a minimal element P with respect to 

inclusion. Let p E P. Then Pp C P is compact (being the continuous image of a 

compact set), non-empty, and moreover (pp)2 C P,  hence Pp = P. In particular 

the set Q = {q E P : qp = p} C P is non-empty and, being the continuous 

inverse image of a singleton, closed. Furthermore Q2 c Q, so that Q = P. That  

is, qp = p for all q E P. In particular, p2 = p. I 

Let S be a compact left topological semigroup and let J C S be non-empty and 

closed. If S J  C J then J is said to be a left  ideal.  Any left ideal, itself being 

a compact left topological semigroup, contains an idempotent by Proposition 

1.3. If J is a left ideal of S that is minimal among left ideals with respect to 

inclusion, then we call J a m i n i m a l  left  ideal,  and any idempotent 0 E J is 
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called a m i n i m a l  i d e m p o t e n t .  By Zorn's Lemma every compact left topological 

semigroup contains a minimal left ideal and hence a minimal idempotent. 

Let G1 = G = $ '(N • N) be the set of all non-empty finite subsets of N • N. 

G is an abelian semigroup under U (that, is, union). For N >_ 2, let GN = 
~ ' (N 2 \ { 1 , . . . , N -  1} 2) be the family of elements in G that are disjoint from 

{ 1 , . . . , N -  1} 2. Let Co = GU {0}. 

We put X = {0, 1} ~~ Then X (with the product topology) is compact and 

metrizable. With respect to the product topology, X x with composition of 

functions as the operation forms a compact left topological semigroup. We embed 

Co in X x by putting T~'),(A) = "y(A U E) for ~ E X and A, E E Go. Finally we 

let 

oo 

(1.1) S =  N { T E : E � 9  
N = I  

Each of the members of this intersection forms a semigroup (see (2.3) in [FK] 

for details). Hence S is a compact left topological semigroup as well. Further- 

more, this is a decreasing intersection of closed sets, hence S is non-empty by 

compactness. 

Working in the semigroup S as defined in (1.1) (rather than in simply 

{TE : E E C0}) is one way of dealing with the non-cancellativity of C0. The 

idea is, knowing what E and EUA are, we can only recover what A is if we know 

something else; specifically, if we can assume that (EMA) = 0, then we will know 

that A = (E U A) \ A. Thus A is "preserved" by (and only by) "disjoint shifts". 

Extending this to finite configurations, a configuration {A1, . . . ,  Ak} C Co is in 
some sense "preserved" if one shifts by a set E which is disjoint from all of the 

A~'s. That is, if one knows E and {E U A1, . . . ,  E U Ak}, and that E is disjoint 

from the A~'s, one may recover {A1, . . . ,  Ak}. The classes of configurations we 

deal with in this section are, indeed, closed under these disjoint shifts, but badly 

non-closed under arbitrary shifts. By living in the semigroup S defined above, we 

can, given r E S and any configuration {A1, . . . ,  Ak} C Go, always approximate 

r by some TE, where E is disjoint from each A,. This is important in the sequel. 

An alternative approach to this issue arises by only allowing unions between 

disjoint sets. One advantage of doing this is that the operation becomes can- 

cellative. A disadvantage is that the object (G, U) is no longer a semigroup, but 

a "partial" semigroup. This approach to infinitary Ramsey theoretic matters 

originates in [BBH], and is developed further in [HM]. We shall not, however, 

employ it here. 
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A subset E of a discrete abelian semigroup S is synde t i c  if there exists a 

finite set F C S such that S = UxEFX-IE. (Here y E x - l E  if xy E E.) E is 

p iecewise  s ynde t i c  if there exists a syndetic set B such that any finite subset 

of B can be shifted into E. In the present context, these well-known ideas are 

not especially useful. Instead, we introduce two related notions. 

Definition 1.2: Suppose s C G. s is said to be s t rong ly  synde t i c  if for 

every M E N, there exists N E N such that for all E E GN+I, there exists 

C C {1 , . . . ,N}2  \ { 1 , . . . , M }  2 such that E U C  E s s is said to be s t rong ly  

pieeewise  s ynde t i e  if there exists a strongly syndetic set B C G such that for 

every finite family ?-/ C B and every N E N there exists E E GN+I such that  

(E U F) E s for every F E 7-/. 

Suppose now that k E N and pl (B) , . . . , pk (B)  are set-polynomials over N 2 

having empty constant term. Let .4 be the family of configurations 

.4 = { {A Upl (B) ,A  U p2(B) , . . . ,A  Upk(B)} :A E G,B E .7:, 

(AMp,(B)) = •, 1 < i < k}. 

Now, according to Theorem 0.2, for any M _> 0 and for any finite coloring of 

GM+I there exists a monochromatic member of .4. In particular, for every finite 

coloring of Go there exists a monochromatic configuration 

{A U pl(B), A W P2 (B) , . . . ,  A U Pk (B)} 

with (A up~(B)) E GM+I, 1 < i < k. We will call such families (families which 

are partition regular in GM+I for all M) of configurations s t rong ly  p a r t i t i o n  

regular. 

PROPOSITION 1.3: Let C C G, let M E N and let .4 be any strongly partition 

regular family of configurations closed under disjoint shifts. 

(a) IrE is strongly syndetic then E contains a member of.4 all of whose elements 

belong to GM+I. 

(b) If s is strongly piecewise syndetic then C contains a member of.4 all of 

whose elements belong to GM + I. 

Proo~ (a) Let N E N be large enough that for every E E GN+I there 

exists A C ( { 1 , . . . , N }  2 \ { I , . . . , M }  2) such that (EU A) E E. Indeed, finitely 

partition GN+I by assigning E to a (:ell according to which A accomplishes 

this (there are finitely many choices for A). For this coloring, there exists a 

monochromatic configuration 7-/ E .4. Monochromaticity implies that for some 
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fixed A C ( 1 , . . . , N } 2 \ { 1  . . . .  ,M} 2, A U 7 / =  (A U H : H e  7/} C E. But A 

is closed under disjoint shifts, so (A U 7i) C A. Furthermore, A E GM+I and 

7 / C  GN+I, so we are done. 

(b) If C is strongly piecewise syndetic then there exists a strongly syndetic 

B such that every finite family contained in /3 can be moved (shifting by an 

element arbitrarily far out) into E. Therefore this part follows at once from part 

(a). m 

The following fact will look very familiar to aficionados of the ultrafilter 

approach to Ramsey theory (cf. [HS, Theorem 4.40]). 

PROPOSITION 1.4: Let ,1 be a minima/idea/ in S and let 0 C J. Let t E N, 

3'1,...,3"t E X and l > 0. Then: 
(a) Bz = {E :  03"j(EUA) =.07j(A), 1 < j < t, A C {1,2, . . . , /}2} is strongly 

syndetic. 
(b) Pt = { E :  3"j(E 

piecewise syndetic. 

Proof: (a) Suppose Bl is not strongly syndetic. Then there exists M such 

that for all N > M there exists a set Ely E GN+I such that for every C C 

{ 1 , 2 , . . . , N } 2 \ { 1 , 2 , . . . , M }  2, (EN U C) e B~. That is, for some A C 

{1,2 , . . . , /}2  and 1 < j <_ t, 

TENO3"j(C U A) = O3"j(EN U C V A) # OTj(A ). 

Let r be an accumulation point in X x of {TEN : N > M}. Then r C S. 

Moreover, for every C C GM+I, r # 03"j(A) for some A C {1,2, . . .  ,l}2 

and some j with 1 < j _< t. 

Using the fact that .l is a minimal ideal, pick ~b E S such that r162 = 0. Finally, 

choose C E ~M+I such that Tc is close enough to r to ensure that 

r U A) = Tcr = r162 = O3"j(A), 1 < j <_ t, A C {1 ,2 , . . . , l}  9. 

This establishes (a). 

(b) Let 7/ C Bl be a finite family and let N E N. Pick E C ~/v+l such that 

TE is close enough to 0 to ensure that 

3"j(E U H U A) = TE3"j(H U A) = O3"j(H U A) = O3"j(A), 

H e T/, 1 <_ j <_ t, A C {1,2 , . . . , /}  2. 

Then (E U H) E Pl for all H e 7/. m 

u A) = 03'j(A), 1 _< j < t, A c {1, 2 , . . . , /}~} is strongly 
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r COROLLARY 1.5: / f r  �9 N and Co = Ui=l Ci, then there exists i with 1 < i < r 

such that Ci is strongly piecewise syndetic. 

Proof'. Let 0 �9 S be an element of a minimal left ideal. Then 

0 � 9  {TE: E 6  Co} = O{TE: E�9 C,}, 
/=1 

so that  for some j ,  0 E {TE : E e Ci}. Therefore, there exists E �9 Cj such that 

01c~(0) = TE1cj(O) = l c j ( E )  = 1. We now employ Proposition 1.4 with l = 0 

and t = 1, taking ~1 to be Ice. Hence the set P = {E : l c j ( E )  = 01c~(0)} is 

strongly piecewise syndetic. But this set is simply C i. | 

Finally, we have the following. 

THEOREM 1.6: Let J C S be a minimal ideal and suppose 0 �9 J. Suppose 

k �9 N and let A be any strongly partition regular family of configurations of 

cardinality k in Go that is closed under disjoint shifts. Let N �9 N and let 

V C ( x X )  k consist of all k-tuples (TA,,TA2,.. . ,TAk), where {A1, . . . ,Ak}  �9 A 

with Ai �9 GN+I, 1 < i < k. Then (0 , . . . ,0)  �9 V. 

Proo~ We must show that for all M,t  �9 N and any choice of ~ l , . . . , ' r t  �9 X, 

E1, . . . ,E t  �9 Go, there exists {A1, . . . ,Ak} �9 A such that A,~ �9 GM+I, 

1 _< m <_ k, and 

TA,~Ti(Ei)=OTi(Ej), l <_m<_k, l <_j<_t. 

Let l be large enough that El C {1 ,2 , . . . , l }  2, 1 < i < t. By Proposition 1.4 the 

set 

B, = {E : Tj(EU A) = OTj(A), l < j <_ t, A C {1,2 , . . . , /}2}} 

is a strongly piecewise syndetic set. This implies that the (perhaps larger) set 

B =  { E : T i ( E U E j ) =  07j(Ei) ,  1 <_j _< t} 

is a strongly piecewise syndetic set as well, so that by Proposition 1.3, B contains 

a configuration {AI . . . .  ,Ak} E A with Am E GN+I, 1 _< m _< k. We are done. 
| 

Taking 0 to be a minimal idempotent in S, we get a notion of largeness for 

subsets of G that will be useful for us. 
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Definition 1.7: A family C c G is said to be s t r o n g ly  c e n t r a l  if there exists a 

minimal idempotent 0 E S such that 01c(0) = 1. 

As suggested by the name, strongly central sets in (G, U) are also c e n t r a l  se ts  

(see [F, Chapter 8] and [BH, Section 6]), but not all central sets in this semigroup 

are strongly central, nor is the notion of centrality especially useful in our current 

context. 

PROPOSITION 1.8: Strongly central sets are strongly piecewise syndetic. 
r Moreover, i f r  E N and G = Ui=x Ci then some cell Cj is strongly central. 

Proo~ See the proof the Corollary 1.5, only take 0 to be a minimal idempotent. 
I 

We now move directly to a combinatorial application which is a 2-dimensional 

version of our main theorem, cast in the language of subsets of N 2. Suppose 

(A~)i~=l C G1 is a sequence of pairwise disjoint sets, and that (B~)i~x C Y: is a 

sequence of pairwise disjoint sets such that, furthermore, (Bi • Bj) fq Ak = 0 

for i,j, k E N. For aesthetic reasons, we shall also require that there exist an 

increasing sequence (Mi)i~l C N such that 

(1.2) B i c { M i _ I + I , . . . , M i }  and AiC{1 , . . . ,Mi}2 \{1 , . . . ,Mi -1}  2. 

For N E N, let M N  be the set of N x N matrices with entries coming from 

{0,1}. Let M = UN=I MN.  For N E N and M = (mij) E MN ,  let 

(1.3) K(M)=(A1UA2U. . .UAN)U U (Bi• 
r r~ t j~ l  

Letting N go over all of N, we get a function K: M --~ 6. We shall refer to the 

range of any function K which arises in this manner, which may be represented 

as a sequence (CM)MEA4 , where CM = K(M), as an M - s y s t e m .  We shall now 

prove an infinitary theorem concerning M-systems. 

THEOREM 1.9: Let C C ~ be strongly central. Then C contains an M-system. 

Proo~ Let 0 E S be a minimal idempotent with 01c(@) = 1. Consider the 

family of configurations 

A I =  {{A, A U B •  B}, A EG, BEY:, A A ( B •  B)=O} 

in G . .A1  is a strongly partition regular family, as we have noted previously. 

Furthermore, one easily sees that A1 is closed under disjoint shifts. Thus, if V 
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is the set of ordered pairs { (TA, TAu(BxB)):  {A, A (A (B • B)} �9 .A1} in (xX) 2, 

by Theorem 1.6 we have (8, 8) �9 V. In particular, we may select A1 �9 G1 and 

B1 �9 Jr such that {A1, A1U(B1 x B1)} �9 ,41 and such that TA, and TAIu(B,• 

are close enough to ~ to ensure that 

l c ( A 1 )  = TA, l c ( 0 )  = e l c ( 0 )  = 1, 

01c(A1) = TA,~lc(O) = ~21c(O) = ~1c(0), 

1c(A1 U (B1 x B1)) = TA~u(B~xB~)lc(r = ~1C(0) = 1, and 

Olc(A1 U (B1 x B1)) = TA,u(B,• = 821C(0) = 61C(0) = 1. 

Let M1 be the smallest integer such that A1 and A1U(B1 x B1) are each contained 
in {1, . . . ,  M1} 2. 

Let now A2 be the family of configurations of the form 

{A U Pl (B), A U P2 (B) , . . . ,  A U Ps (B)}, 

where p l ( B ) , . . . , p s ( B )  are the 8 set-polynomials having empty constant 

term which consist of the union of some subset of the three set-polynomials 
{B x B1, B1 x B, B x B}. ,42 is a strongly partition regular family of configurations 

closed under disjoint shifts. Hence, by Theorem 1.4, if we let V C ( x X )  s consist 

of all 8-tuples (TD1,. . . ,TDs),  where { D 1 , . . . , D s }  �9 .A2 and each Di �9 GM+I, 

we have (8, . . . ,8)  �9 V. Therefore, we may select A2 �9 GM+I and B2 �9 jr  
(containing no element less than M1 + 1) such that 

1c(A2 Upi(B2) U E) = TA2up,(B2)lc(E) = Olc(E) = 1 and 

01c(A2 Upi(B2) U E) = TA2up~(B~)~Ic(E ) = ~21c(E) = Olc(E)  = 1, 

1 < i < 8 ,  E � 9  

Let Ms be the smallest integer such that A2 and B~. x B2 lie in {1,. . . ,  M2} ~. 

Let us take account of how the proof is progressing. We now have the sets A1 

and'A1 U (B1 x B1) in C. These are exactly the images of the 1 x 1 matrices (0) 

and (1) respectively under the map K of (1.3). We also have 

{A2UA1UE: E is a union of some of {(B1 x BI),(B1 x B~),(B2 x B1),(B2 x B2)}} 

c C .  

This family consists precisely of the images of the members of M2 under the map 
K as defined by (1.3). Moreover, we may continue in this fashion, utilizing the 

idempotence of 8. Namely, having chosen A1,. . . ,  At �9 G1 and B1, . . . ,  Bt �9 jr 
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with l c ( K ( M ) )  = O 1 c ( K ( M ) )  = 1 for all M C .Mr, where g is given by (1.3), 

and MI < M2 < .-" < Me (such that (1.2) holds), we may find At+l C ~Mt+l 

and Bt+l E Y (none of whose members are less than Mt + 1), such that 

1c(At+l Up(Bt+l)  U E) = TAt+luv(Bt+,)Ic(E) = O1c(E) = 1 and 

O1c(At+l U p(Bt+l) U E) = TAt+Iup(B,+,)O1c(E ) = 021c(E) = O1c(E) = 1 

for all E E K(.Mt)  and all set polynomials p(B) which are a union of some (pos- 

sibly none) of the monomials (B x B), (Bj x B) and (B x Bj),  1 _< j < t. We let 

Mr+ 1 be the smallest integer such that { 1 , . . . ,  Mt + 1 } 2 contains K (.M t+ 1) (where, 

again, K is defined by (1.2); we keep mentioning it because we are building the 

map g as we go). Notice as well that now 1 c ( K ( M ) )  = O1c (K(M) )  = 1 for all 

M C .h4t+l, so we can continue, thus completing the proof. I 

We now will change our focus slightly. Suppose we are given an increasing 
Or3 sequence (Ri)i_-i of natural numbers, and a sequence of sets non-empty sets 

Bi C {Ri-  1 + 1, Ri -  1 + 2 , . . . ,  Ri }. For every (l, m) C N x N, let aim be the symbol 

xij if ( l ,m) E Bi x Bj. Otherwise, let at,n E {0,1}. Then Y(x i j )  = (alm)t,meN 

is an N x N matrix whose entries come from the set {0, 1} U {xzj : i , j  E N}. 

Moreover, for fixed m C N, the matrix Vm(xij) R,, = (atm)l,m=l is an Rm x Rm 

matrix whose entries come from the set {0, 1} U {xij : 1 < i , j  <__ m}. 

A matrix of this type induces a natural injection (tij)~,j=l --'} Ym(tij ) from .~/ 
to .MRs. Namely, Vm(tij) is the Rm x Rm matrix which results by substituting tij 

R,,, for the symbol xij in the matrix Vm(xij) = (aij)i,j=l constructed above. Hence, 

the N x N matrix V(xi j )  = (atm)l,meN, together with the sequence (Rm),~ 
induces such maps for all m; in other words, induces an injection of M into 

.M (which takes m x m matrices to Rm x Rm matrices). We call the image of 

such a map an A/t-ring. Specifically, the M-ring generated by (Rm)~=l and the 

variable matrix V(xi j )  = (aim). 
Hence for any .M-ring iV', there is an associated bijection ~ojr .M --4 Af, where 

arises as outlined above. We note that if 7~ is another ~4-ring and ~n : Ad --~ 

the associated bijection, then ~vre o ~o2r is again a map arising in the fashion 

outlined above, so that ~T~(JV') is again an .M-ring, called a su b r in g  of 7~. 

r 
THEOREM 1.10: Let .hf be an .M-ring. For any finite partition N" = Ui=I Ci, 

one of the cells Ci contains a subring of .N'. 

Proof: First of all, assume that the result is known for Af = .M. Any 

finite coloring of Af induces a coloring of .M via the bijection ~ r  Extract- 

ing a monochromatic .M-ring 7~ for this induced coloring, ~]r is a subring 
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of A f that  is monochromatic for the original coloring. Hence we may assume 

without loss of generality that  A f = .h4. 
y. 

Suppose, then, that  ]vI = [Ji=x Ci. We will induce an r-cell partition G1 = 

[J~=l Di as follows: for E E ~1, let N be the smallest integer such that E C 

{ 1 , . . . , N }  2. Then let E E D~ if and only if the N x N matrix (aij), where 

aij = 1 if ( i , j )  E E and aij = 0 otherwise, is in Ci. 
One of the cells Oh, where 1 < b < r, must be strongly central and therefore 

by Theorem 1.9 contains an ~4-system generated by a sequence (Ai)i~176 C G1 
o o  and a sequence (Bi)i=l C ~'. Furthermore there is an associated increasing 

sequence (h i t )~ l  C N such that hit is the least integer satisfying AltA (Bt x Bt) C 
{1, . . . ,  Mr} 2. Put  B~ = B2i-l ,  A~ = A2iUA21-1UB2i xB2i, and Ni = M2~, i E N. 

Let V(xi j)  = (aij)idcN be the variable matrix obtained by letting akl = xij if 
o o  t (k, l) e B~ x B~, akz = 1 if (k, l) E [.Ji=l Ai, and akt = 0 otherwise. 

We claim that  the A/l-ring T~ generated by (Ni)i~l and V(xij)  is contained in 

Cb. To see this, let l E N be arbitrary. We will show that ~n(?r C Cb. 

By hypothesis, every set having the form 

(1.4) 
ri~=l 

lies in Db. Moreover, every set of this form has N~ = M2t as the least integer such 

that {1 , . . . ,  Nl} 2 contains it. (Recall that A~I = A21-1 U A2l tA B21 x B2t.) That 

means that every (aij) E r having the property that aij = 1 if and only if 

(i , j)  lies in a given set of the form (1.4) lies in Cb. In other words, ~n(A4l)  C Cb. 
| 

2. Inflnitary polynomial Hales-Jewett  theorem 

In this section we shall extend (without giving full details of the proof) Theorem 

1.10 in two senses. First note that the M-rings of the previous section could 

well be called A~i(2'2)-rings. The first 2 in this proposed superscript is owing to 

the fact that  an M-ring consists of 2-dimensional matrices, that is, indexed by 

{1 , . . . ,  N} 2 for some N C N. One might just as easily consider matrices (aijk) 

indexed by { 1 , . . . , N }  3, or more generally indexed by { 1 , . . . , g } ' ,  l e N. The 

second 2 refers to the cardinality of the set from which the entries of the matrices 

are drawn. That set is {0, 1}. One might consider taking a set of cardinality k, 

such as {0, 1 , . . . ,  k - 1}, as the set from which those entries are drawn. 

As a matter of fact, neither of these considerations poses any obstacle to ob- 

taining correspondingly more general versions of Theorems 1.9 and 1.10. We 
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will, in this section, give a few of the details on the formulation of a more general 

version of Theorem 1.10, and its proof. For R, l, k E N, we will denote by M ~  'k) 

the set of all functions (matrices) A: {1 , . . . ,R}  l ~ { 0 , 1 , . . . , k -  1}. Then we 
I1~176 AA(t'k) We now proceed to define M(t'k)-rings. Suppose we let M (~,k) = wn=x J " n  �9 

are given an increasing sequence (Ri)i~x (let R0 = 0) of natural numbers, and 

a sequence of non-empty sets (Bi)~=l with B~ C {Ri-1 + 1, P~-I + 2 , . . . ,  Ri}, 

i e N. For e v e r y / i l , . . . ,  it), ( j l , . . - , j r )  E N l, let aim...~ be the symbol xjlj2...j~ 

i f ( i l , i 2 , . . . , i t )  �9 Bj~ x B j 2  x . . . x B j , .  Otherwise, let ai,,2...~ �9 { 0 , 1 , . . . , k - I } .  

Then V(xjaj=...jt) = (aim...i,)il,is ..... i~eN is a matrix indexed by N l whose entries 

come from the set { 0 , 1 , . . . , k -  1} O {xj,j=...j, : j x , . . . , j l  �9 N}. Moreover, for 

fixed m �9 N, the matrix Vm(xj~j2...j~ ) = (a . .  ~n,, is a matrix indexed by t l t 2 " " t t l i l , . . . Q = l  

{1, . . . ,  Rm} l whose entries come from the set 

{ 0 , 1 , . . . , k -  1} O {xhj2...j, : 1 <_ J l , . . . , J t  <- m} .  

A matrix of this type induces an injection of .M~ 'k) into . M ~  ). Letting m range 

over N, the matrix V(xjlj2...j~ ) induces a map from .M (l,k) to M (l't). We call 

the image of such a map an M(t'k)-ring. Specifically, the M(t,k)-ring generated 

by (R i )~ l  and the variable matrix V(xj~j2...j~) = (ai,i~...i,)~,,i2 ..... i~r Subrings 

of M(~'k)-rings may be defined much as they were for M-rings in Section 1. 

We want to extend Theorem 1.10 of the previous section to M(t,k)-rings. The 

natural way to accomplish this is to first extend Theorem 1.9 to more general 
types of systems, similar to M-systems, that are subsets of ~(t,k) = (.T-(Nl)) k, 

the semigroup of all k-tuples of finite subsets of N l. All of the definitions (e.g. 

strong piecewise syndeticity, strong partition regularity, strong centrality) and 

propositions in Section 1 extend quite easily to G (~'~). The trickiest part of 

the adaptation owes itself to the fact that Theorem 0.2 is not formulated in a 

manner that  lends itself easily to use in this new environment. Hence we give 

now a version that does. 

THEOREM 2.1: Let l , k , t  �9 N and let p~,j(X),  1 < i < t, 1 <_ j < k be set- 
polynomials over N t whose constant terms are empty. Let H C N be any [inite 

set and let r �9 N. There exists a finite set M C N,  with M ~ H = O, having 
r the property that  i f  .7:(Nt) k = Ui=l Ci then there exists some d with 1 < d < r, 

t k 
some non-empty  N C M ,  and some sets A1, A2, . . . ,  Ak C ~i=~ ~ j = l  Pzh(M) ,  

such that  As ~ p~,j(N) = O, l < i < t, l <_ j,  s <_ k, and 

{(A~ ~ p , , ~ ( N ) , A 2 ~ p i , ~ ( N ) , . . . , A k U p i , ~ ( N ) )  : 1 < i < t}  C Cal. 

Although the above formulation of the polynomial Hales-Jewett theorem is 

not given explicitly in [BL2], it is implicit in the exposition, and hence we shall 
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omit the proof (which, at any rate, follows quite easily from Theorem 0.2; the 

key to seeing this is to identify the k-tuple of sets (A1, . . . ,  Aa-1) in N l with the 

set (({1} • A1) U ({2} x A2) U . . .  U ({k - 1} x Ak-1)) in i 1+1 and consider the 

family of set-polynomials {{i} • p j ( X )  : 1 < i < k - 1, 1 <_ j < t)}. 

Supposing one has the more general form of Theorem 1.9, one must still do 

something to get from there to a more general form of Theorem 1.10. In Section 

1 this was accomplished quite easily, as there is a natural correspondence be- 

tween subsets of {1 , . . . ,  N} 2 and N x N matrices whose entries are drawn from 

{0, 1}. The situation here is only slightly more complicated; there is a natural 

correspondence between k-tuples of subsets of {1, . . . ,  N} l and N x N • . . .  • N 

(l times) "matrices" whose entries are drawn from {0, 1 , . . . ,  2 k - 1}. 

In order to better elucidate the argument (in getting to the more general form 

of Theorem 1.10), we shall examine in some detail a finitary case of moving from 

k-tuples of sets to matrices. For convenience we again consider a case where 

l -- 2. Let us denote, for M > N, 

L ( { N + I , . . . , M } ) = ( { N + I , N + 2 , . . . , M } •  {1 ,2 , . . . ,M})  

U ({1 ,2 , . . . ,Y}  x { N +  1 , N +  2 , . . . , M } ) .  

Notice that  L ( { N  + 1 , . . . ,  M}) is shaped like an L. The following corollary to 

Theorem 2.1 concerns itself with matrices indexed not by squares in the plane 

but by such L-shaped sets. 

COROLLARY 2.2: Let l C N and l e t p l ( X ) , . . .  ,p t (X)  be set-polynomials over N l 

whose constant terms are empty. Let N, r E N. Suppose that p~(A) N p j (B)  -- 0 

for i ~ j and every pair ofsets  A, B such that (A U B) M {1 , . . . ,  N} = 0. Then 

for every k, r c N there exists M > N such that for any function 

c: {0, 1 , . . . , k -  1} L({N+I ..... M}) _.~ {1 , . . . , r} ,  

there exists some v E {0, 1 , . . . ,  k - 1}  L ( { N + I  ..... M}) and some non-empty set B C 

{N  + 1 , . . . ,  M }  such that for every ul, u2 E {0, 1 , . . . ,  k - 1}  L ( { N + I  ..... M}) that 
t agree with v off ofUi=x pj (B), and with Ux and u2 each constant on every Pi (B), 

C ( U I )  = E(U2) .  

The content of Corollary 2.2 is: if eventually the set polynomials Pi have pair- 

wise disjoint ranges then for any r-coloring of large enough (L-shaped) matrices 

whose coordinates are letters from the alphabet {0, 1 , . . . ,  k - 1}, it is possible 

to choose a set B and a large enough matrix such that the color of the matrix 
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remains constant over all possible values of the letters occuring on each pj (B) 

(provided that  this letter is constant over each pj(B)) .  

An example of this: say A C { I , . . . ,  N} and one has the three set polynomials 

p l (B)  = A x B, p2(B) = S x A, andp3(B)  = B x B. Then for B n { 1 , . . . , N }  = 

0, the sets pi(B)  are pairwise disjoint. Hence, for any finite coloring of the 

matrices over the set L ( { N  + 1 , . . . ,  M}), where M is large enough, using the 

alphabet {0, 1 , . . . ,  k - 1}, there exists some matrix v and a set B such that  for 

any replacement of the letters in v by a letter il on A x B, i2 on B x B, and i3 

on B x A, the color of the resulting matrix does not depend on il, i2, or i3. 

As for why Corollary 2.2 follows from Theorem 2.1, consider first of all that,  

given k, if we show Corollary 2.2 holds for k replaced by something bigger than 

k (say, 2k), then it trivially holds for k as well (we can just consider color- 

ings that  identify certain letters). As mentioned earlier, k-tuples of finite sub- 

sets of N 2 may be identified with N x N matrices with entries from the set 

{0, 1 , . . . ,  2 k - 1}, all but  finitely many of whose entries are zero. (Given such 

a k-tuple (A1, . . . ,  Ak) and x 6 N 2, one can let ax be the number whose binary 

representation is 1A1 (X)IA2(X)"" 1Ak (X).) Using this identification and consid- 

ering the set of all polynomial k-tuples (q i , l (X) , . . . ,  qi,~(X)), where each qi,j is 

a union of some of the p~(X)'s, Theorem 2.1 may be used to get Corollary 2.2 

with k replaced by 2 k. 

Here now is our main theorem. 

THEOREF 2.3: Let l, k E N and let Af be an Yt4(t'k)-ring. For any finite partition 

Af = U~=I C~, one of  the cells Ci contains a subring o la f .  

In conclusion, let us prove Theorem 0.2 from Theorem 2.3. Let W (k) = 
r Ui=l c i .  w (k) is an y~o'k)-ring, so by Theorem 2.3 there exists a monochro- 

matic .h4(1,k)-ring A f c  W (k). All we must do is to show that  Af has the correct 

form, so we simply look at its structure. 
R oo There exists an increasing sequence ( i)i=l C N (with R0 = 0) and a sequence 

B oo {R~-I + 1 , . . . ,R~},  and a sequence of of non-empty sets ( i)~=1, with Bi C 
a o o  ~ " ' ' ,  - -  symbols ( ~)i=1, with a~ x i if i �9 Bj for some j and ai �9 {0, 1, k 1} 

otherwise, iV" consists of all 1-dimensional matrices (i.e. words) bib2.. ,  baN, as 

M ranges over N, s l , . . . ,  SM range over {0, 1 , . . . ,  k - 1}, and bi = sj if ai -- xk 

for some j and bi = ai otherwise. 

For m �9 N, let win(x) be the variable word formed by taking the word 

aR , ,_ l+ l""an , ,  and replacing all occurences of Xm by x. One now easily checks 

that  

Af = { w , ( i , ) w 2 ( i 2 ) ' " w M ( i M )  : M �9 N,  i1 �9 { 0 , 1 , . . . , k -  1}, 1 < j <__ M}.  
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In other words, the monochromatic configuration found by Theorem 2.3 is 

precisely of the type needed for Theorem 0.2. 
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